網誌內容

此處內容大致為本人所整理的論文及心得。 為推廣視光相關知識,文章歡迎轉載,但請註明出處。
歡迎對視光有興趣者一起研究討論或給予指教,謝謝大家。因為不常看留言,所以有問題請直接寄信。

星期五, 8月 21, 2015

光線強度、藍光與近視



http://wechat.fingerdaily.com/thread-107470-1-1.html
以上是google查到的圖-犯了那些錯誤呢?



沒時間的就直接看結論與建議! 有部分可能跟您所想的不同!

結論

  1. 實驗顯示,在低光照時,眼睛會對於影像劣化較為敏感,長時間低亮度近距離工作,會導致近視容易增加。
  2. 從統計數據來看,學童每天於戶外明亮環境活動能有效對抗近視發展。
  3. 在成長階段,短波長的光(接近藍光的波長)似乎對眼球的生長有一定的調節作用,且較能抑制近視的發生。

建議

  1. 每天要有一段時間於戶外明亮光線下活動。
  2. 近距閱讀工作,要有明亮且舒適的白光照明。
  3. 不要為了趕潮流長時間(包括室內)配戴太陽眼鏡。
  4. 不建議成長中的學童配戴抗藍光鏡片,無益於近視控制。
  5. 關於藍光的傷害-不管何種波長,只要能量過強,都會傷害視網膜。




有興趣的就看看以下相關的研究結論及參考文獻~

一、關於光亮度與近視的研究文獻


  1. 學校兒童夏季的近視增加較慢。
  2. 雞近視實驗--高亮度環境飼養雞未近視,低亮度環境卻製造近視;高亮度環境飼養雞其中一眼戴太陽眼鏡,帶鏡眼近視。高亮度的環境,不管陽光或人工燈光,皆能阻止雞近視形成
  3. 光亮度阻止近視可能與dopamine(一種神經傳導物質,經研究與近視的形成有關)有相關性,實驗雞注射dopamine拮抗劑能消除光的保護作用。
  4. 猴實驗類似,且發現連續5小時以上高光照才有效。
  5. 也能解釋戶外活動對近視防治的效果。
  6. 對眼的影像品質--亮光-瞳孔縮小能增加焦深,使網膜上影像清晰。暗-瞳孔放大-球面像差增加(近視者像差較正視者大)。
  7. 低亮度對雙眼視覺也有負向作用,若有內斜問題者情況會惡化。


二、關於光波長與近視,目前的實驗及研究

色光--  紅橙黃綠藍紫
波長--   較長--- 較短
  1. 光具有色散現象-過濾藍光鏡片會表現出輕微近視。
  2. 此色散現象是否會影響人眼偵測網膜影像焦點的正確性及正視化的進行仍有爭議。
  3. 近讀時選擇性地消除長波長,明顯降低調節刺激約0.50D,顯示視覺系統近讀時主要使用長波長光,在分子生物研究中也得到類似的結論。
  4. 豬近視實驗--長波長燈光環境下飼養的豬較易近視及有較深玻璃體腔深度(眼軸長)。
  5. 戶外活動較能減少近視增加,可能由於戶外光線波長較室內燈光短。
  6. 帶著藍色鏡片於戶外活動,眼球生長較慢。
  7. 藍光可能有益於人體中央神經系統的dopamine調整。
  8. 鼠近視實驗--相對於正常白光,養於中波長環境的豬,發展出近視;而飼養於短波長環境的豬,發展出遠視。
  9. 鼠近視實驗--即使用負鏡片誘發近視的豬,藍光都能抑制眼軸生長。
  10. 雞近視實驗--紅光誘發近視,藍光誘發遠視。
  11. 猴近視實驗--長波長光是近視的危險因子。

本文主要翻譯於Dr. rer. nat. Klaus Schmid, Physicist所著之
Myopia Manual Edition January 2015,P133-142。個人有所增刪。作者此部分章節所引用的參考文獻如下。

Cui D, Trier K, Munk Ribel-Madsen S. Effect of day length on eye growth, myopia progression, and change of corneal power in myopic children. Ophthalmology. 2013 May;120(5):1074-9    

Woung LC, Lue YF, Shih YF, Accommodation and pupillary response in early-onset myopia among 
schoolchildren, Optom Vis Sci 1998 Aug; 75(8): 611-6    

Charman WN, Radhakrishnan H. Accommodation, pupil diameter and myopia. Ophthalmic Physiol Opt. 2009 Jan;29(1):72-9    

Young, Francis A, The effect of nearwork illumination level on monkey refraction, Am J Optom and Arch Am Acad Optom 1969; 46(9), referenced in referenced in The prevention of acquired myopia, 
http://members.aol.com/myopiaprev/page2.htm    

Lang G, Augenheilkunde, Georg Thieme Verlag Stuttgart New York, 2000, p. 228 

Schaeffel F, Presseerklärung im Rahmen der 96. Tagung der Deutschen Ophthalmologischen Gesellschaft, 19. – 22. September 1998, Berlin    

 Feldkaemper M, Schaeffel F. Are retinal image brightness and spatial frequency distribution independently processed during deprivation myopia development? Investigative Ophthalmology and Visual Science 37: 1497(1996)    

 Ashby R, Ohlendorf A, Schaeffel F. The Effect of Ambient Illuminance on the Development of Deprivation Myopia in Chicks. Invest Ophthalmol Vis Sci. 2009 Jun 10.   

 Ashby RS, Schaeffel F. The effect of bright light on lens compensation in chicks. Invest Ophthalmol Vis Sci. 2010 Oct;51(10):5247-53. Epub 2010 May 5.    

 Optom Vis Sci. 2011 Vol. 88, No. 3; 13th International Myopia Conference Symposium Summaries, Symposium 5, Paper 2 by Ashby R and Morgan I    

 Moore, S. E., Irving, E. L., Sivak, J. G., Callender, M. G.: Decreased light levels affect the emmetropization process in chickens. In: Vision Science and its Applications. OSA Technical Digest Series, Vol. l (Optical Society of America, Washington DC), S. 202-205 (1998)    

 Schmid KL et al. The effect of common reductions in letter size and contrast on accommodation responses in young adult myopes and emmetropes. Optom Vis Sci. 2005 Jul;82(7):602-11    

 Cohen Y et al. Dependency between light intensity and refractive development under light-dark cycles. Exp Eye Res. 2010 Nov 3    

 Smith EL 3rd et al. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Invest Ophthalmol Vis Sci. 2011 Dec 14  

Backhouse S, Collins AV, Phillips JR. Influence of periodic vs continuous daily bright light exposure on development of experimental myopia in the chick. Ophthalmic Physiol Opt. 2013 Sep;33(5):563-72   

Lan W, Feldkaemper M, Schaeffel F. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light. PLoS One. 2014 Oct 31;9(10):e110906.   

 Roberts JE, Visible light induced changes in the immune response through an eye-brain mechanism 
(photoneuroimmunology), I Photochem Photobiol B 1995 Jul; 29(1): 3-15    

Norton TT1, Siegwart JT Jr. Light levels, refractive development, and myopia--a speculative review. Exp Eye Res. 2013 Sep;114:48-57.  

 Atchison DA, Smith G, Efron N, The effect of pupil size on visual acuity in uncorrected and corrected myopia, Am J Optom Physiol Opt 1979 May; 56(5): 315-23    

 Paquin MP, Hamam H, Simonet P, Objective measurement of optical aberaations in myopic eyes. Optom Vis Sci 2002 May;79(5):285-91    

 Owens, Liebowitz, Accommodation, convergence, and distance perceprtion in low illumination. Am J Optom Physiol Opt 1980 Sep;57(9):540-50   7    REFERENCES 341

 Kersten D, Legge GE, Convergence accommodation. J Opt Soc Am 1983 Mar;73(3):332-8    

 Vannas AE, et al. Myopia and natural lighting extremas: risk factors in Finnish army conscripts. Acta Ophthalmol Scand. 2003 Dec;81(6):588-95    

Lan W1, Feldkaemper M, Schaeffel F. Bright light induces choroidal thickening in chickens. Optom Vis Sci. 2013 Nov;90(11):1199-206.   

 Illuminance – Recommended Light Levels http://www.engineeringtoolbox.com/light-level-rooms-d_708.html    

 Millodot M, Stevenson RW, Electrophysiological evidence of adaptation to colored filters. Am J Optom Physiol Opt 1982 Jun;59(6):507-10    

 Schmid KL, Wildsoet CF. Contrast and spatial-frequency requirements for emmetropization in chicks. Vision res 1997 Aug;37(15):2011-21   

 Kroger RH, Binder S. Use of paper selectively absorbing long wavelengths to reduce the impact of educational near work on human refractive development. Br J Ophthalmol 2000 Aug;84(8):890-3    

 Kubena T, Kubena K, Galatik A, Neumann P. Effect of infrared rays on the eye in progressive myopia. Cesk Slov Oftalmol 1999 May;55(3):155-9    

 Long Q et al. Illumination with monochromatic long-wavelength light promotes myopic shift and ocular elongation in newborn pigmented guinea pigs. Cutan Ocul Toxicol. 2009;28(4):176-80.    

 Optom Vis Sci. 2011 Vol. 88, No. 3; 13th International Myopia Conference Symposium Summaries, Kexnote Lecture 3 by Neitz J and Neitz N.    

 Long Q et al. llumination with monochromatic long-wavelength light promotes myopic shift and ocular elongation in newborn pigmented guinea pigs. Cutan Ocul Toxicol. 2009;28(4):176-80.    

 Hathaway WE. Effects of School Lighting on Physical Development and School Performance The Journal of Educational Research Volume 88, Issue 4, 1995    

 Cowan RL et al. Differential effects of D-amphetamine on red and blue light-induced photic activation: A novel BOLD fMRI assay of human dopamine function. Synapse. 2008 Apr;62(4):268-72. doi: 10.1002/syn.20491.    

 Quian YF et al. Transfer from blue light or green light to white light partially reverses changes in ocular refraction and anatomy of developing guinea pigs. J Vis. 2013 Sep 26;13(11)    

Jiang L et al. Interactions of chromatic and lens-induced defocus during visual control of eye growth in guinea pigs (Cavia porcellus). Vision Res. 2014 Jan;94:24-32   

Foulds WS, Barathi VA, Luu CD. Progressive myopia or hyperopia can be induced in chicks and reversed by 
manipulation of the chromaticity of ambient light. Invest Ophthalmol Vis Sci. 2013 Dec 9;54(13):8004-12   

 Shang YM et al. White Light-Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model. Environ Health Perspect. 2014 Mar;122(3):269-76    

 Igor Kanin, Personal communication   a570 

 Liberman J, Light: Medicine of the future, Bear & Co, 1992